
Pergamon 
0021-8928(95)00026-7 

Z Appt. Maths MecKg Vol. 59, No. 2, pp. 227-234, 1995 
Copyright 0 1995 Elsevier Science Ltd 

Printed in Great Britain. All rights reserved 
0021-8928/95 $24.00+ 0.00 

THE THERMAL SHOCK AT THE BOUNDARY OF 
A HALF-SPACE IN THE CASE OF AXIAL SYMMETRY# 

M. V. D O L O T O V  and  I. D.  K I L L '  

Moscow 

(Received 11 April 1994) 

The small-time asymptotic form of the exact solution of the axially symmetric problem of the thermal shock at the boundary of 
an elastic half-space is obtained. The error in the first two terms of the asymptotic expansion is estimated. 

Solutions of the dynamic problem of a thermal shock on the boundary of a half-space were first obtained 
by Danilovskaya [1, 2]. In subsequent papers, a complete list of which is given in [3, 4], the solution of 
the one-dimensional problem was extended to different forms of thermal loading. An axially symmetric 
dynamic thermoelasticity problem in the case of a half-space with a boundary condition of the second 
kind was considered in [5], where most attention was given to obtaining the asymptotic forms of the 
displacements as t ~ **. 

When investigating the destruction of solids by intense heat, the stressed state of the body at short 
heating time is of particular interest. It is therefore of particular interest to obtain a simple approximate 
solution for short times. The use of such a solution is justified if its error is monitored. 

An axially symmetry dynamic problem for a half-space is considered below. The methods developed 
in [6, 7] are used and extended to obtain the approximate solution and to estimate its error. 

1. Consider an elastic half-space z 1> 0 in cylindrical coordinates r, ~p and z. Heat transfer from a 
medium z < 0 takes place in accordance with Newton's law on the boundary of this half-space. Up to 
the instant of time t = 0, the half-space and the medium are quiescent at a temperature T = 0. At the 
instant of time t = 0, the temperature of the medium increases instantaneously and a distribution 

0 = Oof ( r )  (1.1) 

is obtained, where the function [(r) allows of a Hankel transform. It is required to find the stresses in 
the half-space taking account of the dynamic components. 

We will change to dimensionless variables by putting 

T ' =  T_T_ r '= re---L, z' = zcl t '=  tc__~ 

Oo a a a 

~ '=  Scl , h'=--,ha a ' = ~ 0  (1.2) 
a c I 

where a is the thermal diffusivity, cl is the velocity of longitudinal elastic waves, h is the relative heat 
transfer coefficient, 8 is the characteristic dimension of the distribution f(r) and ct is the coefficient of 
linear expansion. We will henceforth omit the primes when writing dimensionless quantities. 

The solution of the heat conduction boundary-value problem 

c)...T.T = AT, T~t=o =0, ~_TI = h(T~z=o- f(r)) 
~t dZ ]z=O 

(1.3) 

o ~2 I 0 o ~2 '~ 

has the form [8] 
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T* (r,z,s) = 7 k fn  (Z)Jo(Xr)F(k,z,s) d%, 
o 

F(X,z,s) = 
he-O~ 

s(o3 + h) 

T*(r,z,s)fLs{T}=~ r(r,z,t)e-Stdt, fn(Z)=H~.{f(r)}=7 rf(r)JoO~r)dr (1.4) 
o o 

co= ~ / s+k  2, argto = 0 when s>O 

(Jn is a Bessel function of the first kind). 
In order to determine the thermoelastic displacement potentials it is necessary to solve boundary- 

value problems for the wave equations 

/~2~ ( _  1 ~... 232~t' =moT,  -F=o 

d~l,=o =~-~-I,=o=~PIt=o =-~L=o=O, ldp(r,z,t)l<**, [~P(r,z,t)l<** (1.5) 

l --V ~2 
.'il 0 = ~ ,  ----- C? / C 2 

l + v  

where v is Poisson's ratio and c2 is the velocity of the transverse elastic waves. 
The solutions of problems (1.5) are determined using a Laplace transformation with respect to t and 

Hankel transformation of the zeroth and first order with respect to r. In this ease, for the images of the 
potentials, we obtain 

F(Z,z,s) 
~P* (r,z, s) = 7o ~C(~"s)e-Rt~ J°O~r)d'A" - m° 7o ~fn(~L)J°(kr) R 2 - 0)2 d'A, 

~F* (r, z, s) = ~ )~D(~,, s)e-R2z J I (Xr)d~ (1.6) 
o 

R, 

arg R I = arg R2 = 0 when s > 0 

Determining the images of the stresses corresponding to ~* and ~F*, we next find the unknown 
functions C(~  s), D(Z, s) from the boundary conditions 

°~'lzfo = ff•L=o = 0  (1.7) 

Finally, for the images of the required stresses, we obtain 

Gq = ~ ~fn(~.~Mq(~.,z,s)Jo(Zr)+ N#(~,z,s)uij(Zr)~iZ. i,j= r,q),z 
2moG o 

v s2(~l +~2~2el)-F(X,z,s ), M,, = R2(~I +~,2~2el2) 
M,, = M  R = 1 - 2 v  

M,z = O, Nrr = N w = ~,2(~ I - R2~2e2 + ~2~2el ), N= = 0 

(1.8) 

Jt (Xr) 
N,~=X,(~--~- +to~), Ur, "/~(~)-Jo(~), u,~=- , u,,=0 e l 2 R  2 = ~r Zr 

h( e-Rt z _ e-e~ ) 
"rz -- JI (2Lr), ~l s(R?_to2)(to+'h) 

hR2 
G = sCRi +o)<co+ h)P(X,s) 
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R 2 -_ E252/2+~, 2, P(~,,$)= R 4 -~2RIR 2 

e I = e  -&z, e 2 = e  -R2z, el2=el-e 2 

(G is the shear modulus). 
The inverse transforms, corresponding to (1.8), can be formally written down using the inversion 

theorem. 
The practical value of the solution obtained in this manner is obviously small. 

2. We will henceforth confine ourselves to functions f(r) for which ]~t(~) decay exponentially as 
increases. 

Finding the asymptotic expansions of the exact solution as t ~ 0 reduces to expanding the function 
M#oo(~ z, s), NO{~ z, s) in series in X 2, integrating term by term and converting to the inverse transforms. 

f of the asymptotic character of the series obtained in this manner is analogous to that given in 
[7]. 

The asymptotic expansion of ~zz has the form 

(Ira .~ ~, A2t+l.O(r)cpk(Z,t), t--)O 
2m0G k=o 

(2.1) 

Am(r)= ~ ~,mfH(~,)Jn(~,r)d~,, m= 1,2,..; n=0,1 
o 

Since cl - 103 m/s and a - 10 -6 mZ/s, it follows from the fourth relationship of (1.2) that large values 
of the dimensionless time f may correspond to physically short times t. Hence, use of the asymptotic form 
when f --* 0 in order to obtain an approximate solution requires justifration. In this connection, we will 
consider certain features of the asymptotic expansion (2.1). The mappings q~,(z, s) = Ls{q~k (z, t)} are 
the coefficients of the expansion, in a power series in ~: of the function 

¢p* (~,,Z,S)= R2(e-&Z-e-°~) " ~2R2R2(e-RnZ-e-R2") (2.2) 
s2(s-1)( to+h) ~ s(R v +(o)(oJ+h)P(k,s) 

Since the roots of the equation P(L, s) = 0 are located on the imaginary axis [9], cp*(~, z, s) has just 
one singular point s = 1 in the half-plane Re s > 0. In the case of the function 9"(~  z, s) and all of its 
derivatives with respect to 2~', this singular point is removable. 

Actually, for the factor in the first term on the right-hand side of (2.2) which determines the nature 
of the singular point, we have 

q(~,Z,S )= ~n q = -RiZ _ p2n_l e-~Z s -  I ' 3(~2)~ P2~-t (2.3) 

where Pro(x) is a polynomial of the mth degree in x. 
The existence of the finite limits lim2_,l[Onq/~(~,2)n], n = 0, 1 . . . .  can be demonstrated using (2.3). 
According to theorem 35.1 in [10], the behaviour of 9k(z, t) as t ~ ** is determined by the expansion 

of ~p~(z, s) in the neighbourhood of the singular point s = 0. By investigating the character of the 
expansion of ~p~(z, s) in the neighbourhood of s = 0, the validity of the relationships 

¢Pk(z,t) = t2kVk(Z,t) (2.4) 

can be proved, where yk(z, t) are bounded functions as t ---> **. 
We will now return to denoting dimensionless quantities by letters without primes. Since, the function 

f(r) is dimensionless, f(r) = f l(r / 8) = fl(r' / 8'). By the properties of a Hankel transformation 

- ( 2 . 5 )  fn"n(k)----6"2~H(~"), A ~ ( r ' ) - ( ~ , ~  mn k~7 ] 

and A(°~ ) have the same values as the dimensional and dimensionless quantities. From (2.1), (2.4) and 
(2.5), we find 



230 M.V. Dolotov and I. D. Kill' 

k'~0 .,2k /" r" "~ 0,, J~--,','~A(2°)+,o "47, Yk(Z',t'), 0 (2.6) 
2moG= = 8 " L S J t'--) 

Since l"/8' = t I = clt/8 and the coefficients of t~  in the expansion (2.6) are bounded as t" ~ oo, it can 
be expected that the asymptotic form obtained from (2.1), retaining of a finite number of terms, will 
be sufficiently accurate when clt/8 "~ 1. Finally, the quality of the asymptotic form obtained can be 
established by estimating the error. 

Calculations, carried out in connection with the example in Section 4, show that, in the case of the 
value of t under consideration and certain values of z, the second term of the asymptotic form of (~= is 
8-10 times greater in absolute magnitude than the asyraptotic representation of this stress. Hence, unlike 
the case of a problem with sources [7], the first two terms of each of the asymptotic expansions of o# 
(i, j = r, tp, z) are used as the approximate solution. Separating the above-mentioned terms of the 
asymptotic form, we obtain 

i f  he -'~s ] 
T(r 'z , t)=T(°) +Sr=  f(r)L) . J's(qr'~+h,I- 

-A3o(r)[tL) -| l h e - ' ~  I 1.71 [ he-Z'E I I 
[ s ( ~ ' +  h ) J - l , , ( 4 ~ + h ) I J  

. . [  . . . . .  , [ h(e-~* -e - '4 ;  ) ] l hz e - "  - 4- ie - ' ~  
2moG(YiJ =_kiT(O)~.ljLJLr,L t l ( s_ l ) (~ / s+h  > f_A3o(r)Lt_,[ 2 s (s- l ) (x /7+h)  + 

h e =~ - e -z4~ 4h e -zs ] l  
+-- 2 - 7  IJ - 2 "~s'(s - l)(~/'s + h) s2 ~('~/~ + 1)(#t~ + h) 

-wj(r)L)-l f 1 h(e-Z* - e - Z ~  ) 2h e - ~  
s 2 (s - 1)(~/s + h) - ~ s 2 ~ (~ /~  + 1)('47 + h) ' + (~jy' j = r, (p, z (2.7) 

Or; = A2 !(r)L)-I l h(e-ZS - e - ~  ) h(e-ZS - e - z~  ) } 
2m0G [ s~(~t 's  + 1 ) ( ~  + h) + s,fs(s - 1)(%/s + h ) - 

~ ~ _ l ~ h z  e -z* - e  - ~ *  hz  e -~u  

-~41~r;~ l-- ~ s2(s-1)(~/~ +h) - ~  s 2 ~ ( ~ ' +  1)(ffs+h) + 

h e -~' - • -us h e -zs - e -~zs 

+'2 s3(ff~+ 1 ) ( ~ +  h) +'2 s 2 ( ~ + l ) f ~ + h ) 2  - 

h 2 e -zs - e -:4~ 4h e -~s - e -eu 1 
+ 8r z - ' 2 -  s 2 ffs'($ - 1)(~fs + h) 2 - -~" s 3 ~ ( ~  + 1 ) ( ~  + h) 

kr=km=l ,  kz=0, l r f l m f v / ( 1 - 2 v ) ,  l z = e 2 / 2  

W r = A30 - A21 / r, we = A21 / r, w z = -A3o, L7 i is the universe operator of Ls 

The inverse transforms in (2.7) are obtained using the tables from [11] and fundamental theorems 
of the operational calculus. 

Relationships (2.7) are exact expressions for the temperature and stresses. The approximate solution 
is found by discarding the errors 8r, 8# (i,j = r, 9, z) in (2.7). If, in (2.7), we retain only terms containing 
f(r) in the expressions for the temperature and normal stresses and terms with the factorA21(r) in Orz, 
then we obtain the asymptotic representation of the exact solution. Note that the asymptotic repre- 
sentatious of the temperature and normal stresses turn out to be the solutions of the corresponding 
one-dimensional problems [2] multiplied byf(r). 
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3. Let us estimate 5-r. From formula (3.3) of [8] and the inequalities 0 < Lt l{e -~(s) (x/(s) + h) -1} ~< 
e-:/(~)(nt)-~[8, III, we obtain 

18rl . I i ~Sl:~/(2L)[a~! z2/~, [ he-z4"i Idz h~3s5 ,2 ~e-Z2/(4t)  -< ( 3 . ,  

~n = ~ ~'nl f u  (~') Id'A', n = l , 2  . . . .  
o 

For the estimate of 80 (i, j = r, q~, z), we use the formula 

j~(~.2,t) . f2(~,2,t)=fl(O,t)  *A(0,t)+~.2[f{(0,t) *f2(0,/)+j~(0,t) *f~(0,t)]+ 

+ - ~  [fl'( Ol ~1'2, t) * f2 ( )1"2, t) + 2f((0, t) * f2'(0, t) + A (A. 2, t)f~'( 0 2 ~.2, t)] (3.2) 

0 < O ~ < l , k =  1,2. 

in which the asterisk is the sign of convolution and differentiation with respect to 7t 2 is denoted by primes. 
Relationship (3.2) is obtained using Taylor's theorem and the properties of a convolution. It is readily 
generalized to the case of a large number of convolution terms. 

As was noted in Section 2, large values of the dimensionless time t' may correspond to physically 
short times. In order to obtain satisfactory estimates of the errors 8i/(i,j = r, ¢0, z) for sufficiently long 
intervals of t, one must proceed with some caution in deriving power estimates of the form At ~. It 
is desirable to obtain the smallest possible value of IX for which, however, the natural condition 
At ¢ = o(o(..~)), t -o 0 is satisfied (0(~) is the last of the terms retained in the asymptotic form of oi/). 
These considerations are used to de'rive the following basic relationships 

+, 

Fl'(~.2,z,t) ~; t2rlo + 2 ( t  +4)rl,, IF1 (~.2,z,t) - Fl(0,z,t)[~< ~.2(tet-ZTlo + zk"rl, ) 

I t tl ' 
1 

(p(~,,s)jl Y" IF3(~.2,t)-F3(0,t)I ~< ~.2Y2t 

(_-Riz _-R2z } 
F4(~2,z,t)= Lt-1~ ¢ - --~ 

( R, 

iF4()2,z,t)_F4(O,Z,t)l~ ~2 ._ 2 TI(t 
£;2 -1 

- z 2 )(~l - n2 ) + z(2z + 
£ 

t)n2 (3.3) 
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I~'<0,~,ol-- ~[(,- z)~,-<,-~)~21, <- z, ~[(t- z)n, +(t- ~z) 2:% ] 

v,z2  _ ÷ ( ,  _ ] 

F6 (;L2, t ) = h-I ~ I--.-L-~ <..... 

IF~[Z2,t~ t ~ ,  lF~(~.2,t)- F6(0,t)[~ ~2 

'ql = rl(t - z), ~2 = rl(t - ~ ) ,  rl0 = 1 - rll, ez = exp(-z 2 / (4t)), I¢ = 1 + 

2 ~2  -I y 
~, = ~-rz-i_l + T~-r~ + ~  -, 

I~ 4 -- 1 02y 
Y2 = 8 - ' ~  + 2e 'i 

8(e 2 - 0 z)(1 - 02) 
7 = e206 - 6e204 + (12e 2 - 8)02 - 4(e 2 - I) 

where q(x) is the Heaviside unit function and ±iO/e are the non-zero roots of  the equation P(1, s) = 0. 
We recall that the primes in (3.3) denote differentiation with respect to Z 2. 
Methods of  deriving relationships (3.3) are given in [6, 7]. 
We will show how the estimates of  5# (i,j = r, ~, z) are obtained by taking the example of ~z. From 

(1.8), we have 
• 

Ozz 1~2h ~ * 2 
= ' 2kg(~,,r)F 1 (k  ,z,s)F;6(~,2,s)d'A+h~ ~3g(~,,r)Ft*(~,2,z,s) d'A,+ 

2moG 2 o o 

÷ ~'2h ~ ~,3g(~,r)F2* (2~2,s)F3 * (2~,2,s)1"~4 (~2,z,s)F~ (~2,s)ark + 
-To 

+h~ kSg(~.,r)F~ (k2,s)F3* (~.2, s)Fs* (~.2,z,s) F6* (k2.s) ar k 
o SRl 

(3.4) 

g(~.,r) = fH(~,)Jo()Cr), F~ = Ls{Ft}, k = 1,2 .... 6 

As can be seen from (2.7) and (3.4), the inverse transform of the fourth term in (3.4) occurs in the 
error &,. The asymptotic expansion in (2.7) only contains the first terms of the asymptotic forms as 
t ~ 0, of the inverse transforms of the second and third terms in (3.4). The errors, corresponding to 
the last three terms in (3.4), are estimated using the methods from [7] on the basis of relationships 
(3.3). 

Using (3.2), we obtain 

~2h ~ ~58(X. r)[~"(O,~ 2 .~.,) • ~(X 2,,) + 2~'(O,z.,)*e~(O.t)+ s~) =-Z- ° 

+Ft(~.2,z,t)*F6#(O6~.2,t)]d~., 0 < O ,  <1, m = l , 6  (3.5) 

for the inverse transform of the first term in (3.4) and the terms of  the asymptotic expansion in (2.7) 
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corresponding to it. The final estimate of 8~ ) is obtained from (3.5) by evaluating the convolutions and 
integrals with respect to k. 

On carrying out similar operations for the remaining errors, we finally obtain 

~ 5 - ~  z + l J [ 5 ~ p ' ( 5 ) + Z ( - ~ e z + ~ 5 ~ )  ( t -z)2T] '+ 

+'~nni P , ( ~ ) P ~ ( 2 ) + 2 ( t + 4 )  t + ~ p t ( ~ ) + z  --~ t2 + 3n ( t - z )  3i2~, e z + 

-i.(|-kJ2)[15+~(pl(53p3(1)+ZlC(t-Z)~l]l )4-~pl(~3-1-~ez(t-Z)3~l+ 

k'lj) JY'L.  P2 t / 7 ~ [ ' l  .3. + 1 6 " ~ )  ~ P 2  ~.~.)(7~+(~.-~-+.~-~/p2(4)+t(t-z)(lp2(2)+~. i0 lZV, J 4-(1- 

15~/g P5 k 2 / )  z~-  P5 } 

+kj 2 ( 1 - 2v )  - 9 - + ~ "  p4(4) [15 13~/n P s i  ~zy  4 ~, ~ /  j j  

j = r ,  tp, z 

hfJ7r zt 64 ~S 7 1 Z 

f- 
32 3~s 7 

[ 3 \ 4 / I Z P7 \ ' ~ / J  

+~( ~9 .i.~_~p4(4)+Lpl(2)P3(2) + 8 ~. (~10 
/~,,., / 2 zs \zsp7 .~ ,/ 

(3.6) 

hzt4. )'| /A,~6471 ~__.(9~_~ I (71"¢r~ _~) ) +4(t+4)(t-z)2rl.+48 +'~"~'P21.";-'-9--~-~/-~e'2[,,7) T~'~'[,, 4" + p2(5) 

Pl (x) = t x - (t - z)XTh, p2(x) = (t - z)xTI! - (t - Ez)x TI2 

P3(X) = tXl]O +ZX~l, p4(z) = (t--z)XTIi +(t .-Ez)XE-II'I2 

4. We will now consider an example. Let fi~r) = 83(r 2 + 82) -3/2. Then fH(Z) ffi 82e-~S,A.~ can be expressed in 
terms of elementary functions [8], I]n = nl/8n-~. 

Caleulatious using (2.7) were carried out for v = 0.25, 8 = 4 x 109. When t = 1.5 x 10 s, r = 0.25, the dinaension- 
~ s t r ~  o ~ / ( 2 m ~ h a ~  a mi.imum o~.'k = -2.64 × 10-' when ~ -- t (on the ~on~itudin~a wavefront), ~ m ~ m u m  
Omax ffi 1.409 x 10 when ~ = 0.6306t/~ (z = t/e is the transverse wavefront) and a mininmm ~2n~ n) ffi 
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-5.622 × 10 -1° when z = 0.0004t. The  derivative i~o~//k has a discontinuity on the longitudinal wavefront. The 
maximum absolute error ~ by (3.6), does not  exceed 8.625 × 10 -11. The relative error when 0 ~< z <~ t does not  
exceed 8% outside the neighbourhoods of values of z in which o,,  changes sign. 

The stress o~/(2m0G), which is characteristic in the case of a non-one-dimensional  problem, has a min imum 
O(mk)m = -7.471 × 10 -13 when z = 0.8828t, a maximum CTmax -- 5.245 x 10 -12 when z = t/e and a min imum (y(2~n --- 
-2.890 × 10 "s when z = 0.0006¢. The maximum relative error when 0 <~ z ~< t does not  exceed 15% outside the 
neighbourhood of values o f z  in which o,7 changes sign. 
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